Abstract

Recent flavor chemistry studies have identified flavor compounds at different concentrations in full- and low-fat Cheddar cheeses. The specific flavor contributions of these compounds in full- and low-fat cheese matrices have not been established. The purpose of this study was to evaluate the sensory response of Cheddar flavor compounds in model full-fat and 75% reduced-fat cheeses. Odor activity values (OAVs) for each compound in full- and reduced-fat cheeses were calculated. Each compound was then added to model cheeses created from 3-week-old full- and reduced-fat Cheddar cheeses. A trained sensory panel (n = 8) evaluated the sensory properties of the cheese models. The final combination of compounds was incorporated into reduced-fat cheese models, and consumers (n = 85) evaluated perceived-aged Cheddar cheese aroma. Based on OAVs and perception of the individual compounds in cheese models, 12 key flavor compounds were identified. Target ideal concentrations of specific cheese flavor compounds in 75% reduced-fat cheese were determined. According to consumers, the perceived aged Cheddar cheese aroma intensity of reduced-fat model cheese with these added compounds was not different (P > 0.05) from the perceived Cheddar cheese aroma intensity of commercial aged full-fat Cheddar cheeses. PRACTICAL APPLICATION The market for reduced-fat Cheddar cheese is increasing as consumers become more health conscious. The structure and biochemistry of reduced-fat Cheddar cheeses are altered, and flavor and texture remain a challenge. This study established the role of 23 volatile compounds using descriptive analysis of cheese model systems. The impact of key compound concentration differences and how these differences affect sensory perception of cheese flavor in full- and 75% reduced-fat Cheddar cheeses were determined. These results provide guidance for mimicking aged Cheddar cheese flavor in reduced-fat cheese.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.