Abstract

To reduce car body weight, multi-material structures with lightweight materials such as carbon-fiber-reinforced plastics (CFRPs) and aluminum alloys (Als) are used to replace parts of steel components, and joining technologies for such dissimilar materials are essential. Friction stir spot welding (FSSW) is one of the technologies used to rapidly and strongly join dissimilar materials. FSSW for carbon-fiber-reinforced thermosetting resin (CFRTS) and Als has been developed using composite laminates with integrally molded thermoplastic resin in the outermost layer. To suppress excessive heating under the tool, this study investigated whether multi-stage heating with a non-heating time during joining affects the heat distribution and strength properties of the joint. Due to heat diffusion in Al during the non-heating time, multi-stage heating can suppress excessive heating under the tool compared to continuous heating, resulting in up to 27% larger welded area, up to 37% smaller decomposed area, and up to 6% lower maximum temperature. The use of multi-stage heating results in up to 5% higher tensile shear strength and 210% longer fatigue life by reducing the thermal decomposition of CFRP matrix resin and PA12 resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.