Abstract

Modern programming languages and operating systems encourage the use of threads to exploit concurrency and simplify program structure. An integral and important part of the Java language is its multithreading capability. Despite the portability of Java threads across almost all platforms, the performance of Java threads varies according to the multithreading support of the underlying operating system and the way Java Virtual Machine maps Java threads to the native system threads. In this paper, a well-known compute-intensive benchmark, the EP benchmark, was used to examine various performance issues involved in the execution of threads on two different multithreaded platforms: Windows NT and Solaris. Experiments were carried out to investigate thread creation and computation behavior under different system loads, and to explore execution features under certain extreme situations such as the concurrent execution of very large number of Java threads. Some of the experimental results obtained from threads were compared with a similar implementation using processes. These results show that the performance of Java threads differs depending on the various mechanisms used to map Java threads to native system threads, as well as on the scheduling policies for these native threads. Thus, this paper provides important insights into the behavior and performance of Java threads on these two platforms, and highlights the pitfalls that may be encountered when developing multithreaded Java programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.