Abstract

Japanese encephalitis (JE) is the most important cause of acute encephalitis syndrome (AES). Japanese encephalitis virus (JEV), the prototype member of the JE serocomplex, belongs to the genus Flavivirus. The immunogenic proteins envelope (E) and non-structural protein 1 (NS1) of JEV are widely explored for the development of vaccines and diagnostics against JEV. However, there are underlying concerns such as the risk of reversion of live-attenuated vaccines to high virulence, the incomplete inactivation of pathogens in inactivated vaccines and partial vaccine coverage. Newcastle disease virus (NDV) is an efficient viral vaccine vector to express several human and animal immunogenic proteins. In the present study, we have developed a recombinant NDV (rNDV), individually expressing the E and NS1 proteins of JEV (rNDV-Ejev and rNDV-NS1jev). The recovered rNDV-Ejev and rNDV-NS1jev were characterized in 9-day-old SPF embryonated chicken eggs and in cell culture. The vaccination of rNDV-Ejev and rNDV-NS1jev showed effective immunity against JEV upon intranasal immunization in BALB/c mice. The rNDVs vaccination produced effective neutralization antibody titers against both NDV and JEV. The cytokine profiling of the vaccinated mice showed an effective Th1 and Th2 mediated immune response. The study also provided an insight that E, when used in combination with NS1 could reduce the efficacy of only E based immunization in mice. Our results suggested rNDV-Ejev to be a promising live viral vectored vaccine against JEV. This study implies an alternative and economical strategy for the development of a recombinant vaccine against JEV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call