Abstract

Polymer insulated medium voltage cables have experienced premature failures in-service, due in large part to water treeing. Research has shown that the initiation sites of these water trees are often located where there are stress enhancements at the insulation/semiconducting shield interface and where water soluble contaminants permeate into the insulation. Material suppliers, cable manufacturers and users have introduced improved materials and cable designs as well as processing, manufacturing, transport, storage, and installation techniques that minimize contamination. Despite these advancements, gradual contamination can still occur due to the diffusion of ground water into the insulation. In fact, certain contaminants that are carried through the semiconductor/insulation shield interfaces tend to promote water tree growth. Manufacturers are now beginning to recognise this problem and have suggested the use of moisture resistant cables with jackets made of PVC, polyethylene or metal/polymer laminates along with underjacket water absorbing materials. This paper discusses the effectiveness of different jackets and materials and presents data on the effectiveness of water absorbing materials in delaying water permeation into the insulation. A simple and efficient cable-cell technique was developed which monitored the effectiveness of complete cable designs, by measuring the long-term water permeation resistance of short lengths of distribution class cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.