Abstract

This article studies the notion of irrational dose assignment in Phase I clinical trials. This property was recently defined by Zhou and colleagues as a dose assignment that fails to de-escalate the dose when two out of three, three out of six, or four out of six patients have experienced a dose-limiting toxicity event at the current dose level. The authors claimed that a drawback of the well-known continual reassessment method is that it can result in irrational dose assignments. The aim of this article is to examine this definition of irrationality more closely within the conduct of the continual reassessment method. Over a broad range of assumed dose-limiting toxicity probability scenarios for six study dose levels and a variety of target dose-limiting toxicity rates, we simulated 2000 trials of n = 36 patients. For each scenario, we counted the number of irrational dose assignments that were made by the continual reassessment method, according to the definitions of Zhou and colleagues. For each of the irrational decisions made, we classified the dose assignment as an underdose assignment, a target dose assignment, or an overdose assignment based on the true dose-limiting toxicity probability at that dose. Across eight dose-toxicity scenarios, there were a total of 181,581 dose assignments made in the simulation study. Of these assignments, 8165 (4.5%) decisions were made when two out of three, three out of six, or four out of six patients had experienced a dose-limiting toxicity at the current dose. Of these 8165 decisions, 1505 (18.4%) recommended staying at the current dose level and would therefore be classified as irrational by Zhou and colleagues. Among the irrational decisions, 41.2% were misclassified, meaning they were made either at the true target dose (17.9%) or at a true underdose (23.3%). The remaining 58.8% were made at a true overdose and therefore truly irrational. Overall, irrational dose assignments comprised <1% of the total dose assignments made during the simulation study. Similar findings are reported in simulations across 100 randomly generated dose-toxicity scenarios from a recently proposed family of curves. Zhou and colleagues argue that the behavior of the continual reassessment method is disturbing due to its ability to make irrational dose assignments. These definitions are based on rules that mimic the popular 3 + 3 design, which should not be the benchmark used to construct guidelines for trial conduct of modern Phase I methods. Our study illustrates that these dose assignments occur very seldom in the continual reassessment method and that even when they do occur, they can often be considered sensible when accounting for all accumulated data in the study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call