Abstract

Substituting the solid piston of conventional reciprocating compressors used for the compression of hydrogen with a suitable ionic liquid will solve many practical problems and limitations that conventional reciprocating compressors face. However, because of the large number of cation and anion combinations and many studies on the unique properties of ionic liquids and the role of ionic liquid cations and anions in determining these properties, a systematic review is required to narrow down the choice of ionic liquids. Therefore, in the present review, a comprehensive study to find the most appropriate ionic liquid candidate to replace the solid piston in reciprocating compressors for compressing hydrogen is reported.Specific criteria concerning the applications of ionic liquids are determined and the roles of the cations and anions, as well as the effect of temperature, are extensively reviewed to identify the most suitable ionic liquid that can fulfill the requirements. As a next step, the options are narrowed down to five ionic liquids with the triflate and bis(trifluoromethylsulfonyl)imide as the anion choices and three different cation types, imidazolium-, phosphonium-, and ammonium-based, as the cation choices. Finally, the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is recommended as the best candidate that can be safely used as a replacement for the solid piston in reciprocating compressors for compressing hydrogen in hydrogen stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.