Abstract

PurposeThe quantitative accuracy of Nuclear Medicine images, acquired for both planar and SPECT studies, is influenced by the isotope-collimator combination as well as image corrections incorporated in the iterative reconstruction process. These factors can be investigated and optimised using Monte Carlo simulations. This study aimed to evaluate SPECT quantification accuracy for 123I with both the low-energy high resolution (LEHR) and medium-energy (ME) collimators and 131I with the high-energy (HE) collimator.MethodsSimulated SPECT projection images were reconstructed using the OS-EM iterative algorithm, which was optimised for the number of updates, with appropriate corrections for scatter, attenuation and collimator detector response (CDR), including septal scatter and penetration compensation. An appropriate calibration factor (CF) was determined from four different source geometries (activity-filled: water-filled cylindrical phantom, sphere in water-filled (cold) cylindrical phantom, sphere in air and point-like source), investigated with different volume of interest (VOI) diameters. Recovery curves were constructed from recovery coefficients to correct for partial volume effects (PVEs). The quantitative method was evaluated for spheres in voxel-based digital cylindrical and patient phantoms.ResultsThe optimal number of OS-EM updates was 60 for all isotope-collimator combinations. The CFpoint with a VOI diameter equal to the physical size plus a 3.0-cm margin was selected, for all isotope-collimator geometries. The spheres’ quantification errors in the voxel-based digital cylindrical and patient phantoms were less than 3.2% and 5.4%, respectively, for all isotope-collimator combinations.ConclusionThe study showed that quantification errors of less than 6.0% could be attained, for all isotope-collimator combinations, if corrections for; scatter, attenuation, CDR (including septal scatter and penetration) and PVEs are performed. 123I LEHR and 123I ME quantification accuracies compared well when appropriate corrections for septal scatter and penetration were applied. This can be useful in departments that perform 123I studies and may not have access to ME collimators.

Highlights

  • The branch theragnostics [1] has become a milestone in personalised cancer treatment, bridging the gap between Oncotherapy and Nuclear Medicine (NM)

  • More ordered subset expectation maximisation (OS-EM) updates were required to reach count convergence for the two smallest spheres (1.5 cm and 3.0 cm). This can be attributed to the limited spatial resolution and the partial volume effects (PVEs) of 123I low-energy high resolution (LEHR), 123I ME and 123 (123I) or iodine-131 (131I) HE [16]

  • The smallest sphere resulted in an SDrelative increase of 15.0%, 16.0% and 25.0% for 123I LEHR, 123I ME and 131I using the HE collimator (131I HE), respectively

Read more

Summary

Introduction

The branch theragnostics [1] has become a milestone in personalised cancer treatment, bridging the gap between Oncotherapy and Nuclear Medicine (NM). The principle of theragnostics lies in the combination of individualised targeted imaging of a cancer disease and its therapy. Both the diagnostic imaging and therapy procedures typically use the same pharmaceutical; in some cases, the diagnostic isotope may differ from that used in therapy. This allows for the visualisation of potential target volumes, such as tumours and organs at risk, enabling estimation of potential toxicities and predicting the benefits of such therapy [2, 3]. Due to the recent development of peptide agents, the theragnostics approach has been heightened and the importance of accurate image quantification using 123I and 131I re-emphasised [2, 5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call