Abstract
Compared to all-atom models, coarse-grained models enable the investigation of the dynamics of simulation systems on a much larger length scale and a longer time scale, which makes them suitable for studying macromolecular systems. Hence, in this work, we performed multiple μs-scale Martini coarse-grained molecular dynamics simulations to reveal the interaction details between SARS-CoV-2 RBD and full-length human ACE2. Besides, the key coarse-grained systems were backmapped into the corresponding all-atom system for the display of structural details. Our results indicated that the plier structure in two ends of the binding interface plays a key role in the binding process of SARS-CoV-2 RBD with ACE2. Furthermore, we also found that when there is no B0AT1 in the simulation system, the N-terminus of ACE2 is more likely to approach the cell membrane, which has a strong correlation with the subsequent fusion of the virus with the cell membrane. These binding details of SARS-CoV-2 RBD and the ACE2 protease domain (PD) as well as the membrane orientation thermodynamics can promote the development of therapeutic drugs and preventive vaccines against SARS-CoV-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.