Abstract

In this study, ZSM-5 zeolites were successfully in situ synthesized on the surface of honeycomb cordierite substrate and certified by XRD and SEM techniques. Strong interaction between zeolite and substrate has been found during in-situ synthesis, and hydrothermal stabilities of the zeolites was improved by entailing. The in-situ synthesized monolithic ZSM-5/cordierite showed superior thermal and hydrothermal stabilities. Cu-ZSM-5/cordierite was prepared by ion-exchange and impregnation methods were studied as catalysts for selective catalytic reduction (SCR) of nitrogen oxides (NOx) in a lean-burn gasoline engine. Engine test results show that NOx emission was decreased by reductants of HC and CO in the exhaust gas without any other extra reducing agents. It also exhibited high activities. Using Cu-ZSM-5/cordierite, the maximum NOx conversion efficiency to N2 reached to 64% at the exhaust temperature of 400 °C and the gas hourly space velocity (GHTV) of 25 000/h. Meanwhile, the HC conversion efficiency was about 60%, while CO was little converted. Cu-ZSM-5/cordierite also showed good duration and anti-poison properties. Furthermore, the activated temperature of the Cu-ZSM-5/cordierite was decreased and the NOx conversion was increased via addition of iridium as a modifier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call