Abstract

Laminaria. sp. seaweeds have been recognised the potential to greatly contribute to the generation of renewable gaseous fuel via anaerobic digestion. Seaweed feedstock has been documented to consistently vary its biochemical composition with seasons, which affects stability of biomethane production. As currently seaweeds are too costly for use as third generation feedstock for biofuels, this paper investigates the biogas potential of the algal waste streams from the existing bio-industry. Analytical tests identified an improved digestibility of extracted residues (C:N > 20). Fermentation with and without inoculum acclimatation revealed the interaction between compositional seasonality and inoculum type to significantly affect methane production from the extracted samples. Summer’s composition has the most significant impact on methane production, with best results achieved with acclimatised inoculum (433 ml CH4 gVS−1 and final biodegradation of about 90%). Organics concentration (tCOD) and ash:volatile (A:V) ratio also play a major role in the bioconversion process. In particular, digestion with acclimatised inoculum better responds to A:V fluctuations across seasons, which produced the highest average methane yield of 334 ml gVS−1. Pretreatments are required to increase the biodegradation index in spring and summer when not using acclimatation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.