Abstract

Fiber-matrix interfacial adhesion in composites is traditionally evaluated by means of a stress-based parameter. Recently, an interfacial energy parameter is suggested to be a valid alternative. However, the energy-based approaches overestimated the energy release rate to initiate the interfacial debonding (interfacial energy), since the plastic deformation in the vicinity of the debonding was neglected for simplicity. An effect of the plastic deformation on the interfacial energy of a fiber-reinforced polymer matrix composite is studied to evaluate the initiation of the interfacial debonding. The fragmentation tests with a model of glass fiber-reinforced vinylester matrix composite were performed, and the interfacial energy with the energy balance method taking into account an energy dissipation of the plastic deformation was calculated. The following results are confirmed; the plastic deformation has a significant influence on the interfacial energy, and the energy balance scheme taking into account the plastic energy dissipation leads to the constant interfacial energy without reference to the amount of the released potential energy. The differences between our model and the previous one are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.