Abstract
Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery reared chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% ofmore » the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.