Abstract

The application of neuroprotective agents in combination with stem cells is considered a potential effective treatment for multiple sclerosis (MS). Therefore, the effects of lithium chloride as a neuroprotective agent and a GSK3-β inhibitor were evaluated in combination with human adipose derived stem cells on re-myelination, oligodendrocyte differentiation, and functional recovery. After inducing a mouse model of MS and proving it by the hanging wire test, the mice were randomly assigned to five experimental groups: Cup, Sham, Li, hADSC, and Li + hADSC. Additionally, a control group with normal feeding was considered. Finally, toluidine blue staining was carried out to estimate the level of myelination. Furthermore, immunofluorescent staining was used to evaluate the mean of OLIG2 and MOG positive cells. The mRNA levels of β-Catenin, myelin and oligodendrocyte specific genes were determined via the Real-Time PCR. The results of the hanging wire test and toluidine blue staining showed a significant increase in myelin density and improvements in motor function in groups, which received lithium and stem cells, particularly in the Li + hADSC group compared with the untreated groups (P < 0.01). Moreover, immunostaining results indicated that the mean percentages of MOG and OLIG2 positive cells were significantly higher in the Li + hADSC group than in the other groups (P < 0.01). Finally, gene expression studies indicated that the use of lithium could increase the expression of β-Catenin, myelin and oligodendrocyte specific genes. The use of Lithium Chloride can increase stem cells differentiation into oligodendrocytes and improve re-myelination in MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call