Abstract
When distributed fiber optic sensing (DFOS) devices are deployed in a geothermal borehole, the optical fiber as the key element, must be able to withstand the harsh environment because the temperature of the geothermal boreholes is higher than 250 °C in most cases. Understanding the deterioration behavior of optical fibers in hydrothermal conditions higher than 250 °C is important for predicting the lifetimes of DFOSs in operation.Geophysical equipment using optical fiber sensing was developed for in-situ measurement of the optical loss of optical fibers under hydrothermal conditions, and a survey method was established. Using this optical fiber sensing, we characterized the deterioration behavior of single-mode polyimide-coated optical fibers. Our experiments with carbon / polyimide-coated fibers under subcritical water from 250 to 350 °C revealed that the polyimide layer and silica cladding easily dissolved in water in that environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.