Abstract

Two in situ enclosure designs intended for use in larval fish studies were evaluated for their capability to reproduce and track the physical properties of the surrounding water and to maintain the behavioral characteristics of enclosed organisms. The enclosures, which were constructed of porous material, allowed near instantaneous response to natural variations in temperature, salinity, and dissolved oxygen at all depths. Phytoplankton biomass inside the enclosures was less variable than that observed outside and its size composition was related to the porosity of the material used. Particle sinking rates inside the enclosures were much lower than those previously reported for plastic bags, suggesting a higher degree of turbulence in our enclosures. Newly hatched larval capelin (Mallotus villosus) and Zooplankton stocked into the enclosures exhibited diel migration of amplitude similar to that observed in the field. Zooplankton were more homogeneously distributed than fish larvae although heterogeneity decreased at night for both taxa. Low cost, ease of handling, environmental reproducibility, and quality of replication provided by the enclosures make them particularly appropriate for replicated experimental studies of the interactions between larval fishes, their predators, and prey.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.