Abstract

Antibody characterization is essential for understanding the immune system and development of diagnostics and therapeutics. Current technologies are mainly focusing on the detection of antigen-specific immunoglobulin G (IgG) using bulk singleplex measurements, which lack information on other isotypes and specificity of individual antibodies. Digital immunoassays based on nucleic acid amplification have demonstrated superior performance by allowing the detection of single molecules in a multiplex and sensitive manner. In this study, we demonstrate for the first time an immuno-rolling circle amplification (immuno-RCA) assay for the multiplex detection of three antigen-specific antibody isotypes (IgG, IgA, and IgM) and its integration with microengraving. To validate this approach, we used the autoimmune disease immune-mediated thrombotic thrombocytopenic purpura (iTTP) as the model disease with anti-ADAMTS13 autoantibodies as the diagnostic target molecules. To identify the anti-ADAMTS13 autoantibody isotypes, we designed a pool of three unique antibody-oligonucleotide conjugates for identification and subsequent amplification and visualization via RCA. To validate this approach, we first confirmed an assay specificity of >88% and a low limit of detection of 0.3 ng/mL in the spiked buffer. Subsequently, we performed a dilution series of an iTTP plasma sample for the multiplex detection of the three isotypes with higher sensitivity compared to an enzyme-linked immunosorbent assay. Finally, we demonstrated single-cell analysis of human B cells and hybridoma cells for the detection of secreted antibodies using microengraving and achieved a detection of 23.3 pg/mL secreted antibodies per hour. This approach could help to improve the understanding of antibody isotype distributions and their roles in various diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.