Abstract
Spring viremia of carp virus (SVCV) has caused mass mortality in cyprinids, with case fatality rates of young fish up to 90%, resulting in enormous economic losses in the aquaculture industry. Immersion vaccination is considered as the most effective method for juvenile fish to combating disease, due to its convenience for mass vaccination and stress-free administration. However, immune responses following immersion vaccination are generally less robust and of shorter duration as those induced through intraperitoneal injection. Herein, to enhance the efficient of immersion vaccine, functionalized single-walled carbon nanotubes (SWCNTs) as carrier were used to manufacture immersion DNA vaccine system (SWCNTs-pEGFP-M) with chemical modification. Results showed that SWCNTs-pEGFP-M could enter into fish body via immersion administration and express antigen proteins in fish kidney and spleen. Moreover, stronger and longer duration immune responses (including serum antibody production and immune genes expression) can be induced in fish vaccinated with SWCNTs-pEGFP-M in comparison with those vaccinated with pEGFP-M alone. Notably, SWCNTs can increase the immune protective effect of naked DNA vaccine by ca. 23.8%. Altogether, this study demonstrates that SWCNTs as a promising DNA vaccine carrier might be used to vaccinate large-scale juvenile fish by bath administration approach, which can provide an outlook for future vaccination strategies against SVCV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.