Abstract

Tomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.). Biological control using fungal agents such as Clonostachys rosea plays a pivotal role in managing gray mold. However, these biological agents can negatively be influenced by environmental factors. However, immobilization is a promising approach to tackle this issue. In this research, we used a nontoxic chemical material, sodium alginate as a carrier to immobilize C. rosea. For this, sodium alginate microspheres were prepared using sodium alginate prior to embedding C. rosea. The results showed that C. rosea was successfully embedded in sodium alginate microspheres, and immobilization enhanced the stability of the fungi. The embedded C. rosea was able to suppress the growth of gray mold efficiently. In addition, the activity of stress related enzymes, peroxidase superoxidase dismutase and polyphenol oxidation was promoted in tomatoes treated with the embedded C. rosea. By measuring photosynthetic efficiency, it was noted that the embedded C. rosea has positive impacts on tomato plants. Taken together, these results indicate that immobilization of C. rosea improved its stability without detrimentally affecting its efficiency on gray mold suppression and tomato growth. The results of this research can be used as a basis for research and development of new immobilized biocontrol agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.