Abstract

Abstract To understand and manage water systems under a changing climate and meet an increasing demand for water, a quantitative understanding of precipitation is most important in coastal regions. The capabilities of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06B product for precipitation quantification are examined over three coastal regions of the United States: the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. A novel uncertainty analysis of IMERG is proposed that considers environmental and physical parameters such as elevation and distance to the coastline. The IMERG performance is traced back to its components, i.e., passive microwave (PMW), infrared (IR), and morphing-based estimates. The analysis is performed using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference at the native resolution of IMERG of 30 min and 0.1°. IMERG Final (IM-F) quantification performance heavily depends on the respective contribution of PMW, IR, and morph components. IM-F and its components overestimate the contribution of light rainfall (<1 mm h−1) and underestimate the contribution of high rainfall rates (>10 mm h−1) to the total rainfall volume. Strong regional dependencies are highlighted, especially over the West Coast, where the proximity of complex terrain to the coastline challenges precipitation estimates. Other major drivers are the distance from the coastline, elevation, and precipitation types, especially over the land and coast surface types, that highlight the impact of precipitation regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call