Abstract
Driving assistance is increasingly used in new car models. Most driving assistance systems are based on automotive cameras and computer vision. Computer Vision, regardless of the underlying algorithms and technology, requires the images to have good image quality, defined according to the task. This notion of good image quality is still to be defined in the case of computer vision as it has very different criteria than human vision: humans have a better contrast detection ability than image chains. The aim of this article is to compare three different metrics designed for detection of objects with computer vision: the Contrast Detection Probability (CDP) [1, 2, 3, 4], the Contrast Signal to Noise Ratio (CSNR) [5] and the Frequency of Correct Resolution (FCR) [6]. For this purpose, the computer vision task of reading the characters on a license plate will be used as a benchmark. The objective is to check the correlation between the objective metric and the ability of a neural network to perform this task. Thus, a protocol to test these metrics and compare them to the output of the neural network has been designed and the pros and cons of each of these three metrics have been noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.