Abstract

The aim of this study was to evaluate the image quality and radiation dose using commercial gold nanoparticles and clinical contrast agents in dual-energy Computed Tomography (CT). Five polymethyl methacrylate (PMMA) tubes were used in this study, where four tubes were filled with different contrast agents (barium, iodine, gadolinium, and gold nanoparticles). The fifth tube was filled with water. Two optically stimulated luminescence dosimeters (OSLD) were placed in each tube to measure the radiation dose. The tubes were placed in a fabricated adult abdominal phantom of 32 cm in diameter using PMMA. The phantom was scanned using a DECT at low energy (80 kV) and high energy (140 kV) with different pitches (0.6 mm and 1.0 mm) and different slice thickness (3.0 mm and 5.0 mm). The tube current was applied automatically using automatic exposure control (AEC) and tube current modulation recommended by the manufacturer (CARE Dose 4D, Siemens, Germany). The contrast-to-noise ratio (CNR) of each contrast agent was analyzed using Weasis software. Gold nanoparticles has highest atomic number (Z = 79) than barium (Z = 56), iodine (Z = 53) and gadolinium (Z = 64). The CNR value of each contrast agent increases when the slice thickness increases. The radiation dose obtained from this study decreases when the pitch increases. The optimal imaging parameters for gold nanoparticles and other clinical contrast agents is obtained at pitch value of 1.0 mm and slice thickness of 5.0 mm. Low noise and low radiation dose obtained at these imaging parameters. The optimal imaging parameters obtained in this study can be applied in multiple contrast agents imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call