Abstract
A double-tank hybrid pneumatic engine system, with one low pressure tank and one high pressure tank has been proposed to improve the energy conversion efficiency and auxiliary braking power output of regenerative braking of vehicles. The performance of three ideal compression cycle scenarios for the double-tank system has been investigated and the results are compared with that of ideal one-tank scenario in order to identify the optimal compression cycle under different primary performance requirements. Results indicate the maximum brake mean effective pressure can be improved to not over 0.2 MPa less than the HP tank pressure and the highest improvement of total air mass recovered can reach over 40% utilising the double-tank scenarios. Scenario 3 performs the best at the braking power output ability, while scenario 4 shows the greatest high pressure compressed air recovery potential. Considering about the LP tank air sources, scenario 2 is the only one that can operate independently without other air complements, which also performs the best at the energy conversion efficiency among the three double-tank scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.