Abstract

Nitrosomonas genus belongs to beta-subclass of Proteobacteria and encompasses closely related species. Sequence independent techniques like single strand confirmation polymorphism (SSCP) was attempted in the present study to resolve AOB using ammonia monooxygenase (amoA) and hydroxylamine oxidoreductase (hao) gene fragments, unique to AOB. Variation in hydroxylamine oxidoreductase (HAO) enzyme zymogram of isolates observed in the study was also explored as an additional sequence independent method to substantiate the observations. Nitrosomonas europaea (standard strain) and 12 isolates, obtained by enriching environmental samples, were differentiated into six and four groups by SSCP analyses of amoA and hao gene fragments, respectively, whereas they could be resolved into six distinct groups through activity staining of HAO enzyme. amoA gene fragment was therefore found to be better than hao gene fragment in resolving the studied AOB based on richness and evenness with Simpson's index of diversity - 0.85. However, the ensembled use of these molecular methods (SSCP of amoA and hao gene fragments) and HAO enzyme zymogram in fingerprinting AOB provide better resolution and evenness, contributing significantly in AOB diversity studies. Grouping of AOB isolates by hao gene SSCP analysis followed almost the same pattern as that by 16S rRNA gene based sequence analysis, hence it is suitable as a phylogenetic marker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call