Abstract

Two critical components of the validation of any in vivo screening assay are to demonstrate sensitivity and specificity. Although the Endocrine Disruptor Screening Program's Tier 1 Male and Female Pubertal Protocols have been shown to be sensitive assays for the detection of weak endocrine disrupting chemicals (EDCs), there are concerns that the assays lack specificity for EDC effects when a chemical induces systemic toxicity. A lack of specificity, or the ability to correctly identify an inactive or "negative" chemical, would increase the probability of identifying false positives. Here, we orally exposed rats to hydroxyatrazine (OH-ATR), a biotransformation by-product of the chlorotriazine herbicides that produced nephrotoxicity following a 13-week dietary exposure. Based on a previous study in our laboratory, males were dosed with 11.4 to 183.4 mg/kg OH-ATR and females were dosed with 45.75 to 183.4 mg/kg OH-ATR. Following exposure in both sexes, there was a dose-response increase in mean kidney weights and the incidence and severity of kidney lesions. These lesions included the deposition of mineralized renal tubule concretions, hydronephrosis, renal tubule dilatation, and pyelonephritis. However, no differences in body weight, liver weight, or reproductive tissue weights, reproductive or thyroid histology, hormone concentrations or the age of pubertal onset were observed. Therefore, the results demonstrate that the endpoints included in the pubertal assay are useful for nonendocrine (systemic) effects that define an no observable effect level (NOEL) or lowest observable effect level (LOEL) and provide one example where an impact on kidney function does not alter any of the endocrine-specific endpoints of the assay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.