Abstract

Not only due to the energy crisis European policymakers are exploring options to substitute natural gas with renewable hydrogen. A condition for the application of hydrogen is a functioning transportation infrastructure. However, the most efficient transport of large hydrogen quantities is still unclear, and deeper analyses are missing. A promising option is converting the existing gas infrastructure. This study presents a novel approach to develop hydrogen networks by applying the Steiner tree algorithm to derive candidates and evaluate their costs. This method uses the existing grid (brownfield) and is compared to a newly built grid (Greenfield). The goal is the technical and economic evaluation and comparison of hydrogen network candidates.The methodology is applied to the German gas grid and demand and supply scenarios covering the industry, heavy-duty transport, power, and heating sector, imports, and domestic production. Five brownfield candidates are compared to a greenfield candidate. The candidates differ by network length and pipeline diameters to consider the transported volume of hydrogen. The economic evaluation concludes that most brownfield candidates' cost is significantly lower than those of the greenfield candidate. The candidates can serve as starting points for flow simulations, and policymakers can estimate the cost based on the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call