Abstract

Passive auto-catalytic recombiners (PARs) are widely used to mitigate a hydrogen hazard. The first step to evaluate the hydrogen safety by PARs is to obtain qualified test data of the PARs for validation of their analytical model. SPARC PAR tests SP8 and SP9 were conducted to evaluate the hydrogen recombination characteristics of a honeycomb-shaped catalyst PAR. To obtain the hydrogen recombination rate from the PAR test data, two methods, Method-1 and Method-2, introduced by the THAI project, were applied. Since a large gradient of hydrogen concentration developed during hydrogen injection can cause a large error in the hydrogen mass obtained by integrating the measured hydrogen concentrations, a gate was installed at the PAR inlet to homogenize hydrogen in the test vessel before the PAR operation in the tests. A computational fluid dynamics (CFD) code with a PAR model was also applied to evaluate the characteristics of the PAR recombination according to the PAR inlet conditions, and the results were compared with those from Method-1 and Method-2. It was confirmed that the recombination rates from Method-1 require a correction factor to be compatible with results from Method-2 and the CFD simulation in the case of the SPARC-PAR tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.