Abstract
Three-dimensional numerical investigations of a novel passive micromixer were carried out to analyze the hydrodynamic and thermal behaviors of Nano-Non-Newtonian fluids. Mass and heat transfer characteristics of two heated fluids have been investigated to understand the quantitative and qualitative fluid faction distributions with temperature homogenization. The effect of fluid behavior and different Al2O3 nanoparticles concentrations on the pressure drop and thermal mixing performances were studied for different Reynolds number (from 0.1 to 25). The performance improvement simulation was conducted in intervals of various Nanoparticles concentrations (φ = 0 to 5%) with Power-law index (n) using CFD. The proposed micromixer displayed a mixing energy cost of 50–60 comparable to that achieved for a recent micromixer (2021y) in terms of fluid homogenization. The analysis exhibited that for high nanofluid concentrations, having a strong chaotic flow enhances significantly the hydrodynamic and thermal performances for all Reynolds numbers. The visualization of vortex core region of mass fraction and path lines presents that the proposed design exhibits a rapid thermal mixing rate that tends to 0.99%, and a mass fraction mixing rate of more than 0.93% with very low pressure losses, thus the proposed micromixer can be utilized to enhance homogenization in different Nano-Non-Newtonian mechanism with minimum energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.