Abstract

The use of bioactive materials, such as Ximenia americana L., to stimulate the bone repair process has already been studied; however, the synergistic effects of its association with light emitting diode (LED) have not been reported. The present work aims to evaluate the effect of its stem bark extract incorporated into methacrylate gelatin hydrogel (GelMA) on the bone repair process using pure hydrogel and hydrogel associated with LED therapy. For this purpose, the GelMA hydrogel loaded with Ximenia americana L. extract (steam bark) was produced, characterized and applied in animal experiments. The tests were performed using 50 male Wistar rats (divided into 5 groups) submitted to an induced tibia diaphyseal fracture. The therapy effects were verified for a period of 15 and 30 days of treatment using histological analysis and Raman spectroscopy. After 15 days of induced lesion/treatment, the new bone formation was significantly higher in the GXG (GelMA + X. americana L.) group compared to the control group (p < 0.0001). After 30 days, a statistically significant difference was observed when comparing the GXLEDG (GelMA + X. americana L. + LED) and the control group (p < 0.0001), the GXG and the control group (p < 0.001), and when comparing the GG, GXG (p < 0.005) and GXLEDG (p < 0.001) groups. The results shows that the Ximenia americana L. stem extract incorporated into GelMA hydrogel associated with LED therapy is a potentiator for animal bone repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call