Abstract

ABSTRACT Several phylogenetic clusters of duck Tembusu virus (DTMUV) that caused outbreaks in ducks in Asia have been identified since its emergence in 2010, highlighting the need for an efficient host system that can support isolation of all circulating phylogenetic clusters of DTMUV. In this study, various host systems, including different avian embryonated eggs (duck and chicken) and cell cultures (primary duck embryo fibroblast (DEF), primary chicken embryo fibroblast (CEF), baby hamster kidney (BHK-21), African green monkey kidney (Vero) and Aedes albopictus clone C6/36 (C6/36) cells), were evaluated and compared for their ability to support DTMUV isolation and propagation. Our results showed that all host systems were susceptible to DTMUV infection; however, BHK-21 and primary DEF cells supported more efficient replication of DTMUV compared to the other host systems. BHK-21 cells had the highest DTMUV isolation rate when tested with experimental and field clinical samples. All circulating phylogenetic clusters of DTMUV, including clusters 1, 2 and 3, were successfully isolated from duck clinical samples using BHK-21 cells. In conclusion, our findings supported the use of BHK-21 cells as a host system for primary isolation of all circulating phylogenetic clusters of DTMUV from duck clinical samples. This study highlights the importance of selecting the most appropriate host system for efficient isolation and propagation of DTMUV from duck clinical samples. RESEARCH HIGHLIGHTS DTMUV replicated more efficiently in BHK-21 and primary DEF cells than in other host systems tested. BHK-21 cells had the highest DTMUV isolation rate. All DTMUV phylogenetic clusters were successfully isolated from the samples using BHK-21 cells. BHK-21 cells were the most efficient host system for DTMUV isolation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call