Abstract

A novel semi-organic combustion approach using orange and lemon juice as chelating agents is employed to synthesize the perovskite Sr0.8X0.2Co0.2Fe0.8O3-δ (x = La, Ce) cathode for IT-SOFCs. This approach has been found to exhibit lower toxicity compared to chemical routes and lower impurities compared to green routes. The structural analysis validated the successful synthesis of perovskite Sr0.8X0.2Co0.2Fe0.8O3-δ (La, Ce) cathode materials with no prominent secondary phase of impurities while surface morphology revealed a porous and well-connected network of particles. EDS confirmed the composition and thermo-gravimetric analysis showed weight losses related to the creation of vacancies. The functional groups were investigated through FTIR and the conductivity measurements revealed higher electrical conductivity for Sr0.8X0.2Co0.2Fe0.8O3-δ (x = La, Ce) synthesized with orange juice as a chelating agent with Sr0.8La0.2Co0.2Fe0.8O3-δ exhibiting slightly higher value compared to Sr0.8Ce0.2Co0.2Fe0.8O3-δ. The electrochemical performance showed the highest power density of 354 and 313 mW·cm−2 at 700 °C obtained for cells having Sr0.8X0.2Co0.2Fe0.8O3-δ (x = La, Ce) cathodes synthesized with orange juice which was attributed to better crystallinity and uniform lattice. This work shows that a novel semi-organic route is successfully employed to synthesize the perovskite cathode materials for IT-SOFCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.