Abstract

Abstract Bacteria are known to play a crucial role in coral health but their mechanisms are unclear. Siderophore production could be one of the mechanisms by which they benefit or harm the corals. Bacteria produce siderophore to adapt in harsh conditions, such as nutrient limiting and competing environments such as coral surface. In the present study, siderophore producing ability of microbes associated with healthy and bleached corals is evaluated as both healthy and bleached coral surface provide a different environment concerning nutrients and competitions. Total of 129 siderophore-producing bacteria associated with two healthy (n = 66 isolates) and bleached coral (n = 63) species (Porites spp. and Turbinaria spp.) from the Gulf of Kutch (GoK), Gujarat (India) are screened and compared. No relation between coral health status and siderophore producing ability of microbes is observed (one-way ANOVA, p = 0.67). All the isolates are positive to catecholate type of siderophore which has the strongest affinity for limiting iron. The study also explores the growth and siderophore production behavior of healthy and bleached coral isolates at decreasing pH and temperature rise as they are the important factors that affects the solubility of nutrients and thus, the structure and functioning of the microbes. Isolates from bleached corals showed an increase in growth even at pH 6, whereas the growth of healthy coral isolates reduces at pH 6. Temperature rise is negatively correlated to growth and siderophore production by all isolates except Bacillus sp. PH26. Combined low pH and temperature rise stress, negatively affect growth and siderophore production of coral-associated microbes with Bacillus sp. PH26 as exception. General correlation trend of bacterial growth and siderophore production is positive. The isolates showing exceptional behavior might be possibly beneficial or harmful to the coral health. Thus, growth and siderophore production of microbes under changing climate conditions might be used as preliminary tools to screen beneficial and pathogenic microbes of corals from opportunistic microbes. This screening would reduce the number of possible candidates for in-situ and in-vitro microcosm experiments to understand the role of siderophore producing microbes in coral health. Overall, pH and temperature have a significant impact on coral-associated microbial growth and siderophore production, which ultimately impact the coral health and disease as the microbes form an integral part of coral holobiont. The study laid the foundation for future studies to understand the role of siderophore producing bacteria in coral health in the global climate-changing era.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call