Abstract
Nanoparticles were designed to promote insulin intestinal absorption via the oral route, to increase portal insulin levels to better mimic the physiological pathway, providing enhanced glucose control through glycogenolysis and gluconeogenesis. Nanoparticles were formulated with insulin encapsulated in the core material consisting of alginate and dextran sulfate, associated with poloxamer and subsequently coated with chitosan then albumin. A spherical and slightly rough core was observed in electron micrographs with the appearance of a concentration gradient of the polysaccharide structure toward the periphery of the nanoparticle. Atomic force microscopy showed that the fully formed nanoparticles are about 200 nm in diameter with smooth and spherical morphology. Histopathological analysis of organs and tissues of diabetic rats dosed daily for 15 days with insulin nanoparticles was used to evaluate toxicological issues. No morphological or pathological alterations were observed in rat liver, spleen, pancreas, kidney or intestinal sections. Following, the effect of nanoencapsulated insulin on inhibiting hepatic gluconeogenesis was evaluated after a single insulin administration and oral glucose tolerance test, which represents a significant metabolic challenge to the liver. Alterations in the hepatic glucose metabolism of fasted streptozotocin-diabetic rats were determined by the percent contribution of glycogenolysis and gluconeogenesis, measured by using metabolic tracers, however similar gluconeogenesis contribution to the hepatic metabolism was observed between diabetic rats receiving nanoencapsulated insulin or insulin solution. The metabolic results may be explained by the inability of a single dose in shifting the gluconeogenesis/glycogenolysis contributions, sampling time, fasting period or by influence of the kidney enzymes and impairment in insulin signaling observed in stz-diabetic rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.