Abstract
AbstractA two‐step heat treatment was utilized as a means to improve the mechanical properties of a high‐density polyethylene structure which was fabricated using the three‐dimensional printing technique. It was found that the relationship between structure and properties was strongly influenced by heat treatment conditions including treatment times (15–60 min) and treatment temperatures (140–180 °C) of both primary and secondary steps. The use of primary heating at 180 °C for 15 min and secondary heating at 160 °C for 60 min resulted in the highest tensile modulus and strength, 0.7 GPa and 14.8 MPa, respectively. The changes in both shrinkage and tensile properties were governed by the level of residual porosity and quality of polyethylene interface in samples which were both influenced by the degree of thermally induced densification and binder degradation. Empirical correlations between porosity and shrinkage or tensile properties were found to be power functions. Copyright © 2010 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.