Abstract

This paper presents a numerical study on heat sink thermal performance using phase change materials (PCM) and a vapor chamber for heat source cooling. Heat sink performance in both natural and forced convection heat transfer modes is investigated. The influence of various geometrical parameters such as number, height and thickness of fins for three different modes of conventional heat sink, PCM-based heat sink and heat sink integrated with vapor chamber is studied. Numerical results showed that the number of fins and fin height were more effective than the fin thickness in reducing heat source temperature. Furthermore, in natural convection, the addition of PCM and vapor chamber to the heat sink reduces the heat source temperature by a maximum of 33.1% and 9.5%, respectively, compared to a conventional heat sink. But in forced convection, the use of vapor chamber reduces the heat source temperature by 7.9% while the addition of PCM to the heat sink affects its performance adversely. In fact when fresh air is blown to the heat sink, it provides a higher temperature potential at all the surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call