Abstract
As the usage of pesticides for both agricultural and non-agricultural uses increases, it is more important than ever to employ probabilistic methods rather than deterministic ones to calculate the danger to human health. The current work demonstrates the application of deterministic and probabilistic approaches to assess the human health risk related to glyphosate during the consumption of surface and groundwater by different population groups. To that aim, the concentration of glyphosate pesticide in the surface and groundwater was measured and human health risk for three population groups including children, teens, and adults was evaluated. Overall, the probabilistic approach via Monte Carlo simulation showed a valid result for the estimation of human health risk and determination of dominant input parameters.•The health risk of glyphosate exposure during water consumption for various population groups were evaluated using deterministic and probabilistic methods.•The modeling is performed by Crystal Ball (11.1.2.4) software, as open access software, and requires a limited number of inputs.•The probabilistic method could reliably assess the risks of glyphosate by considering the variability and uncertainty in input variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.