Abstract

Numerical simulation of void growth from thousands of randomly distributed particles is used to assess the functional dependence of the Gurson model. Shock loading of the model region followed by a ramped pressure release creates a smoothly varying velocity field in which the void growth is inertially stabilized. The pressure, effective stress, and void fraction are obtained from the simulation for comparison with the Gurson model. The results show that the pressure-void fraction relation from the model reasonably follows the simulation data, but the numerical data exhibit significantly greater void fraction dependence on the effective stress than the Gurson model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.