Abstract
A thorough evaluation of the recently released Global Satellite Mapping of Precipitation (GSMaP) is critical for both end-users and algorithm developers. In this study, six products from three versions of GSMaP version 8, including real time (NOW-R and NOW-C), near real time (NRT-R and NRT-C), and post-real time (MVK-R and MVK-C), are systematically and quantitatively evaluated based on time-by-time observations from 2167 stations in mainland China. Among each version, both products with and without gauge correction are adopted to detect the gauge correction effect. Error quantification is carried out on an hourly timescale. Three common statistical indices (i.e., correlation coefficient (CC), relative bias (RB), and root mean square error (RMSE)) and three event detection capability indices (i.e., probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI)) were adopted to analyze the inversion errors in precipitation amount and precipitation event frequency across the various products. Additionally, in this study, we examine the dependence of GSMaP errors on rainfall intensity and elevation. The following main results can be concluded: (1) MVK-C exhibits the best ability to retrieve rainfall on the hourly timescale, with higher CC values (0.31 in XJ to 0.47 in SC), smaller RMSE values (0.14 mm/h in XJ to 0.99 mm/h in SC), and lower RB values (−4.78% in XJ to 16.03% in NC). (2) Among these three versions, the gauge correction procedure plays a crucial role in reducing errors, especially in the post-real-time version. After being corrected, MVK-C demonstrates an obvious CC value improvement (>0.3 on the hourly timescale) in various sub-regions, increasing the percentage of sites with CC values above 0.5 from 0.03% (MVK-R) to 28.47% (MVK-C). (3) GSMaP products generally exhibit error dependencies on precipitation intensity and elevation, particularly in areas with drastic elevation changes (such as 1200–1500 m and 3000–3300 m), where the accuracy of satellite precipitation estimates is significantly affected. (4) CC values decreased with an increasing rainfall intensity; RB and RMSE values increased with an increasing rainfall intensity. The results of this study may be helpful for algorithm developers and end-users and provide a scientific reference for different hydrological applications and disaster risk reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.