Abstract

A vortex-assisted surfactant enhanced emulsification liquid-liquid microextraction based on non-ionic silicone surfactant was successfully developed for the determination of organophosphorus pesticides in food samples coupled to gas chromatography-mass spectrometry. A new type of non-ionic silicone surfactant composed of polysiloxane chains was employed as a green emulsifier to facilitate the emulsification of extraction solvent into the sample matrix, thereby intensifying the mass transfer of target analytes into the organic phase. The variables that affect the extraction were systematically optimized: 80 μl of hexane and 0.5% (v/v) of silicone surfactant were used as extraction solvent and surfactant respectively, the solution was mixed well under vortex agitation for 1 min with the addition of 4% (w/v) sodium sulfate. Under optimum conditions, the linearity of the method was obtained in the range of 0.1-200 μg/kg with a good coefficient of determination varying from 0.9986 to 0.9996. The limit of detection and the limit of quantitation were between 0.008-0.1 and 0.02-0.3 μg/kg, respectively. Application of the proposed method to real samples gave satisfactory recovery values (80%-118%) for the target analytes. The suggested approach has also proven to be convenient, expeditious, and environmentally benign.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.