Abstract

Cardiovascular disease (CVD) remains a pressing global health concern. While traditional risk prediction methods such as the Framingham and American College of Cardiology/American Heart Association (ACC/AHA) risk scores have been widely used in the practice, artificial intelligence (AI), especially GPT-4, offers new opportunities. Utilizing large scale of multi-center data from 47,468UK Biobank participants and 5,718 KoGES participants, this study quantitatively evaluated the predictive capabilities of GPT-4 in comparison with traditional models. Our results suggest that the GPT-based score showed commendably comparable performance in CVD prediction when compared to traditional models (AUROC on UKB: 0.725 for GPT-4, 0.733 for ACC/AHA, 0.728 for Framingham; KoGES: 0.664 for GPT-4, 0.674 for ACC/AHA, 0.675 for Framingham). Even with omission of certain variables, GPT-4's performance was robust, demonstrating its adaptability to data-scarce situations. In conclusion, this study emphasizes the promising role of GPT-4 in predicting CVD risks across varied ethnic datasets, pointing toward its expansive future applications in the medical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.