Abstract

e13563 Background: Most ovarian cancer patients are treated with platinum-based chemotherapy but eventually relapse with incurable disease. The G protein-coupled estrogen receptor GPER (GPR30) mediates Ca2+ mobilization in response to estrogen and G-1, a synthetic agonist. Large and sustained Ca2+ responses can lead to mitochondrial Ca2+ overload and apoptosis. Hence, we evaluated whether G-1 could induce apoptosis in cisplatin-sensitive A2780 and isogenic cisplatin–resistant CP70 (14-fold resistant), C30 (70-fold resistant) and C200 (157-fold resistant) human ovarian cancer cells. Bcl-2 and Bcl-xL protect mitochondria from Ca2+overload, and were overexpressed in these cisplatin-resistant cells; thus we also examined combining the Bcl-2 family inhibitor navitoclax with G-1. Methods: Cytoplasmic [Ca2+]c and mitochondrial [Ca2+]m were monitored using microscopy and fluorescent Ca2+ probes. Cell cycle, apoptosis and mitochondrial membrane potential (MMP) were assessed by flow cytometry of propidium iodide, Annexin V and DiIC1(5) -stained cells. The intracellular Ca2+ chelator BAPTA was used to block Ca2+mobilization. Results: Expression of the 53kDa GPER but not the 38 kDa isoform progressively increased with increasing cisplatin resistance. G-1 elicited sustained [Ca2+]c rises that correlated with 53 kDa GPER expression, followed by rises in [Ca2+]m. In all cells, 2.5 μM G-1 blocked cell cycle progression at G2/M, inhibited proliferation, and induced apoptosis (A2780 > C30 > CP70 ≥ C200). G-1 induced p53, caspase-3 and PARP cleavage, and MMP loss. BAPTA prevented G-1’s cell cycle and apoptotic effects in cells showing large Ca2+ mobilization responses but did not in cells with small Ca2+responses. Combining navitoclax with G-1 superadditively decreased cell viability and increased apoptosis. Conclusions: G-1 blocked cell cycle progression and induced apoptosis via a Ca2+-dependent pathway in cells expressing high 53 kDa GPER levels, but via a Ca2+-independent pathway in cells with low 53 kDa GPER expression. G-1 also interacted cooperatively with naviticlax. Therefore, G-1 plus navitoclax shows potential for therapeutic use in platinum-sensitive and -resistant ovarian cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call