Abstract
The advent of the GOCE and GRACE missions during the last decade have brought new insights and promising results both in the static and time-variable representation of the Earth’s gravity field. The focus of this work is directed to the evaluation of most available Global Geopotential Models (GGMs) from GOCE and GRACE, both satellite only as well as combined ones. The evaluation is carried out over an extensive network of collocated GPS/Levelling benchmarks (BMs) which covers the entire part of continental Greece and with respect to the reductions the GGMs provide in existing gravity data in order to assess their performance in a scenario that a remove-compute-restore procedure would be followed for geoid determination. From the evaluation with GPS/Levelling BMs, it was concluded that the GOCE/GRACE GGMs provide an absolute accuracy at the 12–15 cm level, up to degree and order (d/o) 250, when considering the geoid omission error. This is comparable and in some cases better than the performance of EGM2008 in Greece. Moreover, the latest (Release 3) versions of the GGMs provide considerably better results compared to the earlier version by 1–5 cm. In terms of relative errors, GOCE/GRACE GGMs reach the 1 cm level for baselines between 50 and 60 km, while for longer ones, 80–90 km, their performance is analogous to the local geoid model and the ultra-high degree combined GGMs. Finally, GOCE/GRACE GGMs manage to provide the same, as EGM2008, level of reduction to the local gravity anomalies, with a std at the 26.7–27.8 mGal level, when evaluated up to d/o 250.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.