Abstract

In an inflammatory state where HOCl is generated, glycine readily reacts with HOCl to produce glycine chloramine, an anti-inflammatory oxidant. Colonic delivery of celecoxib elicits anticolitic effects in a trinitrobenzene sulfonic acid-induced rat colitis model. Glycine-bearing celecoxib derivatives were prepared and evaluated as a colon-specific mutual prodrug acting on nuclear factor-κB (NFκB), an anticolitic target. Glycylcelecoxib (GC), N-glycylaspart-1-ylcelecoxib (N-GA1C), and C-glycylaspart-1-ylcelecoxib (C-GA1C) were synthesized and their structures identified using infrared and proton nuclear magnetic resonance spectrometer. The celecoxib derivatives were chemically stable in pH 6.8 and 1.2 buffers. GC and C-GA1C were resistant to degradation in the small intestinal contents, while N-GA1C was substantially cleaved to release celecoxib. In contrast, all the celecoxib derivatives were degraded to liberate celecoxib in the cecal content. These results suggest that GC and C-GA1C could be delivered to and liberate celecoxib and glycine in the large intestine. In human colon carcinoma HCT116 and murine macrophage RAW264.7 cells, combined celecoxib–glycine chloramine treatment additively suppressed the production of proinflammatory NFκB target gene products. Collectively, our data suggest that C-GA1C is a potential colon-specific mutual prodrug acting against NFκB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call