Abstract

To improve the prevention and control of geological disasters in Shuicheng District, 10 environmental factors—slope, slope direction, curvature, NDVI, stratum lithology, distance from fault, distance from river system, annual average rainfall, distance from road and land use—were selected as evaluation indicators by integrating factors such as landform, basic geology, hydrometeorology and engineering activities. Based on the weight of evidence, random forest, support vector machine and BP neural network algorithms were introduced to build WOE-RF, WOE-SVM and WOE-BPNN models. The sensitivity of Shuicheng District to geological disasters was evaluated using the GIS platform, and the region was divided into areas of extremely high, high, medium, low and extremely low sensitivity to geological disasters. By comparing and analyzing the ROC curve and the distribution law of the sensitivity index, the AUC evaluation accuracy of the WOE-RF, WOE-SVM and WOE-BPNN models was 0.836, 0.807 and 0.753, respectively; the WOE-RF model was shown to be the most effective. In the WOE-RF model, the extremely high-, high-, medium-, low- and extremely low-sensitivity areas accounted for 15.9%, 16.9%, 19.3%, 21.0% and 26.9% of the study area, respectively. The extremely high- and high-sensitivity areas are mainly concentrated in areas with large slopes, broken rock masses, river systems and intensive human engineering activity. These research results are consistent with the actual situation and can provide a reference for the prevention and control of geological disasters in this and similar mountainous areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call