Abstract

Thirty six pearl millet genotypes were evaluated in randomized complete block design with two replications during 2011/2012 at two locations to study the magnitude of genotype by environment interaction for yield and yield related traits and identify the most stable high yielding genotypes. ANOVA of data at individual locations revealed significant differences among genotypes at Marigat and Koibatek for all yield components. Combined mean analysis of variance showed that the Genotype and location main effects and the genotype by environment interaction were highly significant (P≤0.01) for grain yield and other traits, indicating differential response of genotypes across testing locations and the need for stability analysis. Marigat was the most suitable environment and gave highest mean grain yield of 3620 kg/ha. The lowest yield 870 Kg/ha was recorded at Koibatek. Genotypes EUP 32, EUP 35, EUP 19 and EUP 10 produced high mean yield of 3530, 3080, 2690 and 2590 kg/ha respectively. The lowest grain 1290 kg/ha was obtained from genotype EUP 4.Based on the parameters of stability, three stable (widely adapted) and high yielding genotypes (EUP 34, EUP 18, and EUP 9) were identified. They also out-yield the standard open pollinated variety (OPV) check, Kat PM2. Genotypes EUP 32 was the highest yielding across all sites followed by EUP 35 and could be recommended for further multi-location evaluation in warmer environment and possible release for commercial production. The findings of this study showed that pearl millet hybrids have high potential for commercial production in Kenya than the OPVs. The ANOVA results showed that the effects of environments, genotypes and genotype x environment interaction (GE) were important in trait expression and performance of genotypes. In addition, it was observed that amount of rainfall received at both vegetative and post-anthesis phases and temperature had an effect on grain yield. The GGE biplot analysis characterised the environments in terms of stability and productivity, where Marigat was the best for grain yield; implying that environment-specific selection should be adopted. Genotypes EUP 34, EUP 18, and EUP 9 were the best performing since they out yielded the standard OPV check. These stable high yielding genotypes can be evaluated further in varied agro-ecologies and recommended for release as commercial hybrid varieties in ASALs of Kenya.

Highlights

  • IntroductionThe grain is a superior foodstuff, containing high quality protein with a good balance of amino acids

  • The findings of this study showed that pearl millet hybrids have high potential for commercial production in Kenya than the open pollinated variety (OPV)

  • The ANOVA results showed that the effects of environments, genotypes and genotype x environment interaction (GE) were important in trait expression and performance of genotypes

Read more

Summary

Introduction

The grain is a superior foodstuff, containing high quality protein with a good balance of amino acids. It has more oil than maize and is a "high-energy" cereal. Amongst all cereals (maize, sorghum, finger millet etc) pearl millet is the most nutritious with high levels of protein (up to 12%) and energy (3600 K cal kg-1). It has a cheap source of protein, grain iron (Fe) and zinc (Zn) [6]. Pearl millet is easy to grow and suffers less from diseases as compared to sorghum, maize, or other grains

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.