Abstract

In occupational exposures, populations are simultaneously exposed to a mixture of chemicals. We aimed to evaluate DNA damage due to possible carcinogen exposure (phenylhydrazine, ethylene oxide, dichloromethane, and 1,2-dichloroethane) in lymphocytes of pharmaceutical industry workers from the same production line. Population comprised 16 subjects (9 females and 7 males) who were exposed to multiple chemicals for 8 months. Genome damage was assessed using alkaline comet assay, micronucleus assay, and comet assay coupled with fluorescent in situ hybridization (comet-FISH). After 8 months of exposure, the issue of irregular use of all available personal protective equipment (PPE) came into light. To decrease the risk of exposure, strict use of PPE was enforced. After 8 months of strict PPE use, micronuclei frequency and comet assay parameters in lymphocytes of pharmaceutical workers significantly decreased compared with prior period of irregular PPE use. Comet-FISH results indicated a significant shift in distribution of signals for the TP 53 gene toward a more frequent occurrence in the comet tail. Prolonged exposure to possible carcinogens may hinder DNA repair mechanisms and affect structural integrity of TP 53 Two indicators of loss of TP 53 gene integrity have risen, namely, TP 53 fragmentation rate in lymphocytes with persistently elevated primary damage and incidence of TP 53 deletions in undamaged lymphocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.