Abstract
Genetic diversity and genome-wide linkage disequilibrium (LD) were investigated among 43 U.S. wheat (Triticum aestivum L.) elite cultivars and breeding lines representing seven U.S. wheat market classes using 242 wheat genomic simple sequence repeat (SSR) markers distributed throughout the wheat genome. Genetic diversity among these lines was examined using genetic distance-based and model-based clustering methods, and analysis of molecular variance. Four populations were identified from the model-based analysis, which partitioned each of the spring and winter populations into two subpopulations, corresponding largely to major geographic regions of wheat production in the United States. This suggests that the genetic diversity existing among these U.S. wheat germplasm was influenced more by regional adaptation than by market class, and that the individuals clustered in the same model-based population likely shared related ancestral lines in their breeding history. For this germplasm collection, genome-wide LD estimates were generally less than 1 cM for the genetically linked loci pairs. This may result from the population stratification and small sample size that reduced statistical power. Most of the LD regions observed were between loci less than 10 cM apart. However, the distribution of LD was not uniform based on linkage distance and was independent of marker density. Consequently, LD is likely to vary widely among wheat populations. © Crop Science Society of America.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.