Abstract

Background: Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD. Methods: Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival. Results: Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include SLC4A1, DTL, EPB42, SNCA, and TOP2A. In addition, hub genes had a high diagnostic value. Conclusion: Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.