Abstract

External beam therapy (EBT) GAFCHROMIC film is evaluated for dosimetry and characterization of the CyberKnife radiation beams. Percentage depth doses, lateral beam profiles, and output factors are measured in solid water using EBT GAFCHROMIC film (International Specialty Products, Wayne, NJ) for the 6 MV radiation beams of diameter 5 to 60 mm produced by the CyberKnife (Accuray, Sunnyvale, CA). The data are compared to those measured with the PTW 60008 diode and the Wellhofer CC01 ion chamber in water. For the small radiation field sizes used in stereotactic radiosurgery, lateral electronic disequilibrium and steep dose gradients exist in a large portion of these fields, requiring the use of high-resolution measurement techniques. For small beams, the detector size approaches the dimensions of the beam and adversely affects measurement accuracy in regions where the gradient varies across the detector. When film is the detector, the scanning system is usually the resolution-limiting component. Radiographic films based upon silver halide (AgH) emulsions are widely used for relative dosimetry of external radiation treatment beams in the megavoltage energy range, because of their good spatial resolution and capability to provide integrated dosimetry over two dimensions. Film dosimetry, however, has drawbacks due to its steep energy dependence at low photon energies as well as film processor and densitometer artifacts. EBT radiochromic film, introduced in 2004 specifically for IMRT dosimetry, may be a detector of choice for the characterization of small radiosurgical beams, because of its near-tissue equivalence, radiation beam energy independence, high spatial resolution, and self developing properties. For radiation beam sizes greater than 10 mm, the film measurements were identical to those of the diode and ion chamber. For the smaller beam diameters of 7.5 and 5 mm, however, there were differences in the data measured with the different detectors, which are attributed to their different spatial resolution and non-water-equivalence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call