Abstract

ObjectiveTwo-wheeler riders frequently sustain injuries to the head and face in real-world crashes, including traumatic brain injury, basilar skull fracture, and facial fracture. Different types of helmets exist today, which are recognized as preventing head injuries in general; however, their efficacy and limitations in facial impact protection are underexplored. Biofidelic surrogate test devices and assessment criteria are lacking in current helmet standards. This study addresses these gaps by applying a new, more biofidelic test method to evaluate conventional full-face helmets and a novel airbag-equipped helmet design. Ultimately, this study aims to contribute to better helmet design and testing standards. MethodsFacial impact tests at two locations, mid-face and lower face, were conducted with a complete THOR dummy. Forces applied to the face and at the junction of the head and neck were measured. Brain strain was predicted by a finite element head model taking both linear and rotational head kinematics as input. Four helmet types were evaluated: full-face motorcycle and bike helmets, a novel design called a face airbag (an inflatable structure integrated into an open-face motorcycle helmet), and an open-face motorcycle helmet. The unpaired, two-sided student’s t-test was performed between the open-face helmet and the others, which featured face-protective designs. ResultsA substantial reduction in brain strain and facial forces was found with the full-face motorcycle helmet and face airbag. Upper neck tensile forces increased slightly with both full-face motorcycle (14.4%, p >.05) and bike helmets (21.7%, p =.039). The full-face bike helmet reduced the brain strain and facial forces for lower-face impacts, but not for mid-face impacts. The motorcycle helmet reduced mid-face impact forces while slightly increasing forces in the lower face. Significance of resultsThe chin guards of full-face helmets and the face airbag protect by reducing facial load and brain strain for lower face impact; however, the full-face helmets’ influence on neck tension and increased risk for basilar skull fracture need further investigation. The motorcycle helmet’s visor re-directed mid-face impact forces to the forehead and lower face via the helmet’s upper rim and chin guard: a thus-far undescribed protective mechanism. Given the significance of the visor for facial protection, an impact test procedure should be included in helmet standards, and the use of helmet visors promoted. A simplified, yet biofidelic, facial impact test method should be included in future helmet standards to ensure a minimum level of protection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.